Process Economics Program

Review 2014-11
Monoethylene Glycol (MEG)
Process Summary

By Dipti Dave and Syed Naqvi
IHS Chemical agrees to assign professionally qualified personnel to the preparation of the Process Economics Program’s reports and will perform the work in conformance with generally accepted professional standards. No other warranties expressed or implied are made. Because the reports are of an advisory nature, neither IHS Chemical nor its employees will assume any liability for the special or consequential damages arising from the Client’s use of the results contained in the reports. The Client agrees to indemnify, defend, and hold IHS Chemical, its officers, and employees harmless from any liability to any third party resulting directly or indirectly from the Client’s use of the reports or other deliverables produced by IHS Chemical pursuant to this agreement.

For detailed marketing data and information, the reader is referred to one of the IHS Chemical programs specializing in marketing research. THE IHS CHEMICAL ECONOMICS HANDBOOK Program covers most major chemicals and chemical products produced throughout the world. In addition the IHS DIRECTORY OF CHEMICAL PRODUCERS services provide detailed lists of chemical producers by company, product, and plant for the United States, Europe, East Asia, China, India, South & Central America, the Middle East & Africa, Canada, and Mexico.
Monoethylene glycol (MEG or ethylene glycol) is the most important of the commercially available glycols. Diethylene glycol (DEG) and triethylene glycol (TEG) are obtained as coproducts in the manufacture of MEG from ethylene oxide in some processes. MEG is consumed predominantly in polyesters (polyethylene terephthalate or PET) used for fibers, film, solid-state resins, and antifreeze. DEG and TEG are used in a wide variety of end products and as chemical intermediates.

MEG demand is highly dependent upon the economy, and more particularly upon the economic cycle-sensitive applications such as polyester fibers in Asia and PET packaging resins in all regions. The world consumption of MEG was approximately 27.3 million metric tons in 2013. In 2013-2018, demand is projected to grow at a 4.8% AAGR to reach 33.6 million metric tons in 2018.

From the process standpoint, MEG is particularly interesting since it can be produced from several feedstocks such as ethylene, coal, natural gas, glycerin, and from bioethanol (from sugarcane and sugarcane processing waste). The main objective of this process summary is to provide a direct economic comparison of the main competing technologies from traditional petroleum-based ethylene to coal-based syngas.

In addition, due to the price fluctuations of the feedstocks over time, each follows different market dynamics; a process with the lowest production cost at a given time may have the highest production cost at a different time. A traditional snapshot process economics comparison, given a particular time and region, can often lead to a wrong process selection. A historical process economics comparison over a long period of time gives a better basis for investment decisions. Moreover, feedstock prices vary by global region; a process which has the lowest production costs in one region may not be the best in a different region.

This process summary highlights the new iPEPSpectra interactive data module with which our clients can quickly compare historical production economics of competing processes in several major global regions. The interactive module, written as an Excel pivot table, is attached with the electronic version of this process summary. The module provides a powerful interactive tool to compare production economics at various levels, such as cost, cash cost, and full production cost. An iPEPSpectra historical economic comparison provides a more comprehensive way of assessing competing technologies, leading to a more valid investment decision.
Table of Contents

1. Executive summary .. 1
 Introduction ... 1
 Technology ... 1
 Processes .. 1
 Licensors .. 2
 Comparison of process economics .. 3
 Conclusion .. 5
 Historical economics comparison - an iPEPSpectra™ analysis ... 5
2. MEG production processes ... 7
 Introduction ... 7
 Chemistry for ethylene-based MEG production processes ... 8
 Chemistry for Shell OMEGA technology .. 8
 Chemistry for Dow METEOR™ technology ... 9
 Chemistry for the coal–based syngas MEG production processes .. 9
 Commercial processes .. 12
 Conventional ethylene oxide (EO) hydration process ... 12
 Selective ethylene oxide (EO) hydration process ... 14
 Shell OMEGA (Only MEG Advanced) technology .. 15
 Dow METEOR™ (Most Effective Technology for Ethylene Oxide Reactions) technology 17
 Ethylene glycol production from coal-based syngas by Fujian process ... 18
 Ethylene glycol production from coal-based syngas by Ube process .. 19
 Ethylene glycol production from coal-based syngas by Sinopec process .. 20
3. Process economics .. 25
 Unit consumption and variable costs ... 25
 Capital investment .. 25
 Production costs ... 26
 Environmental impacts .. 28
4. Market overview ... 31
5. Historical economics comparison - an iPEPSpectra™ analysis ... 37
 Historical prices ... 37
 Ethylene ... 37
 Coal .. 38
 Historical process economics comparison - iPEPSpectra™ cost module ... 38
 Historical plant cash cost .. 38
 Historical spread ... 47
6. Detailed process economics .. 55
7. Cost bases .. 69
 Capital investment ... 69
 Production costs ... 69
 Effect of operating level on production costs .. 70
8. Cited references ... 71

Tables

Table 2.1: Typical Physical Properties of MEG—Polyester grade .. 11
Table 2.2: Typical Physical Properties of MEG—Antifreeze grade ... 12
Table 2.3: Comparison of Key Process Features of Petroleum-Based Syngas MEG Technologies 21
Table 2.4: Comparison of Key Process Features of Coal-Based Syngas MEG Technologies 23
Table 3.1: Variable Costs of Petroleum-Based MEG Production Processes .. 25
Table 3.2: Capital Costs of Petroleum-Based MEG Production Processes .. 26
Table 3.3: Production Costs of Petroleum-Based MEG Production Processes 26
Table 3.4: Variable Costs of Coal-Based Syngas MEG Production Processes 27
Table 3.5: Capital Costs of Coal-Based Syngas MEG Production Processes ... 28
Table 3.6: Production Costs of Coal-Based Syngas MEG Production Processes 28
Table 3.7: Environmental Impacts of Petroleum MEG Production Processes 29
Table 3.8: Environmental Impacts Coal-Based Syngas MEG Production Processes 30
Table 4.1: MEG by Major Producers ... 35
Table 4.2: Coal to MEG Projects in China ... 36
Table 6.1: Conventional (EO) Ethylene Oxide Hydration Production Costs 55
Table 6.2: Selective (EO) Ethylene Oxide Hydration Production Costs .. 56
Table 6.3: Shell OMEGA (Only MEG Advanced) Technology Production Costs 59
Table 6.4: Dow METEOR™ (Most Effective Technology for Ethylene Oxide Reactions) Technology Production Costs ... 61
Table 6.5: Ethylene Glycol Production From Coal-Based Syngas By Fujian Production Costs 63
Table 6.6: Ethylene Glycol Production From Coal By Ube Process Production Costs 65
Table 6.7: Ethylene Glycol Production From Coal By Sinopec Process Production Costs 67

Figures

Figure 1.1: Routes to Monoethylene Glycol ... 2
Figure 1.2: Comparison of Technologies–Capital Intensity .. 3
Figure 1.3: Comparison of Technologies–Production Costs ... 4
Figure 1.4: Comparison of Technologies–Based On Carbon Emission .. 4
Figure 1.5: Comparison of Technologies–Based On Water Consumption ... 5
Figure 1.6: Historical Spread MEG Produced by Conventional EO Hydration for Major Regions 6
Figure 2.1: Routes to Monoethylene Glycol ... 7
Figure 2.2: Conventional Ethylene Oxide (EO) Hydration Block Flow Diagram 13
Figure 2.3: Selective Ethylene Oxide (EO) Hydration Process Block Flow Diagram 14
Figure 2.4: Shell OMEGA (Only MEG Advanced) Technology Block Flow Diagram 16
Figure 2.5: Dow METEOR™ (Most Effective Technology for Ethylene Oxide Reactions) Technology Block Flow Diagram ... 17
Figure 2.6: MEG Production by Coal-Based Syngas Fujian Process Block Flow Diagram 18
Figure 2.7: MEG Production by Coal-Based Syngas Ube Process Block Flow Diagram 19
Figure 2.8: MEG Production by Coal-Based Syngas Sinopec Process Block Flow Diagram 20
Figure 4.1: MEG Global Supply and Demand ... 31
Figure 4.2: MEG Global Demand by Use ... 32
Figure 4.3: MEG Global Production by Feedstock .. 32
Figure 4.4: MEG Global Demand by Region .. 33
Figure 4.5: MEG Global Capacity by Region .. 33
Figure 4.6: Monoethylene Glycol World Capacity Distribution By Technology 34
Figure 5.1: Historical Ethylene Prices ... 37
Figure 5.2: Historical Coal Prices .. 38