Process Economics Program

Review 2013-02
NGL Recovery by Low Pressure Drop Refrigeration Process

By Richard H. Nielsen
IHS Chemical agrees to assign professionally qualified personnel to the preparation of the Process Economics Program’s reports and will perform the work in conformance with generally accepted professional standards. No other warranties expressed or implied are made. Because the reports are of an advisory nature, neither IHS Chemical nor its employees will assume any liability for the special or consequential damages arising from the Client’s use of the results contained in the reports. The Client agrees to indemnify, defend, and hold IHS Chemical, its officers, and employees harmless from any liability to any third party resulting directly or indirectly from the Client’s use of the reports or other deliverables produced by IHS Chemical pursuant to this agreement.

For detailed marketing data and information, the reader is referred to one of the IHS Chemical programs specializing in marketing research. THE IHS CHEMICAL ECONOMICS HANDBOOK Program covers most major chemicals and chemical products produced throughout the world. In addition the IHS DIRECTORY OF CHEMICAL PRODUCERS services provide detailed lists of chemical producers by company, product, and plant for the United States, Europe, East Asia, China, India, South & Central America, the Middle East & Africa, Canada, and Mexico.
NGL Recovery by Low Pressure Drop Refrigeration Process

By Richard H. Nielsen

September 2013

Abstract

The development of horizontal drilling and fracking (hydraulic fracturing) technology for producing gas from shale reserves is significantly increasing NGL (natural gas liquids) production as well. This process has already significantly increased natural gas production and proven reserves in the United States. Another result of this new production is ethane displacing liquid feedstocks for ethylene steam cracking. Several new steam crackers announced to be built in the United States will be fed by NGL recovered from shale gas. Other countries are interested in shale gas exploration including China, India, Poland, Germany, Spain, the United Kingdom, and Ukraine.

Randall Gas Technologies, a division of Lummus Technology, a CB&I company, has developed the IPOR™ (Iso Pressure Open Refrigeration) process to economically totally recover C3+ LPG from most natural gas feedstocks. The process uses conventional propane refrigeration combined with an open-loop mixed-refrigeration cycle to obtain separation at cryogenic temperatures far colder than in conventional refrigeration processes. This enables recovery efficiencies comparable to advanced turboexpander processes but at lower capital and operating costs. Since the pressure drop of the natural gas stream across the plant is low, recompression of the sales gas is avoided in many applications where the raw gas supply pressure (<600 psig) is high enough to meet the sales gas pressure requirement plus the process pressure loss. The process can be configured in several ways depending upon the feedstock, site conditions, and objectives.

In this Process Economics Program Review, the economics of two applications of the process are presented. The first application is C3+ recovery from a lean gas feedstock. The second application lowers the nitrogen content (IPOR-N2 process) of the natural gas while recovering a mixed C3+ NGL product from a rich feed gas.
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2011 NGL production by region</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>NGL production trend by region</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Global NGL production, 2000–2012</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>Number frequency distribution of US plant site feed gas capacity</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>Volume frequency distribution of US plant site feed gas capacity</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>Wellhead, finished natural gas, and NGL price history</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>NGLs price history</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>NGL recovery by low pressure drop refrigeration process—lean gas</td>
<td>51</td>
</tr>
<tr>
<td>9</td>
<td>NGL recovery by low pressure drop refrigeration process—rich gas</td>
<td>53</td>
</tr>
</tbody>
</table>
Tables

1 Worldwide natural gas proven reserves ... 3
2 Natural gas capacity and throughput by region .. 4
3 Natural gas liquids production, 1,000 gal/day ... 5
4 Mercury in natural gas .. 10
5 Typical gas analyses for four unconventional natural gases 11
6 Selected commercial NGL recovery processes .. 12
7 Selected NGL turboexpansion recovery process patents 14
8 Natural gas liquids by low pressure drop refrigeration process 18
9 Design basis and assumptions .. 19
10 Dry feed gas composition, wt fraction .. 19
11 Product yields and properties .. 19
12 One set of Y-grade NGL specifications ... 20
13 Natural gas liquids—lean gas
 Stream flows ... 21
14 NGL by constant pressure process—lean gas
 Major equipment .. 22
15 NGL by constant pressure process—lean gas
 Utilities summary .. 23
16 Natural gas liquids—rich gas case
 Stream flows ... 25
17 NGL by constant pressure process—rich gas
 Major equipment .. 27
18 NGL by constant pressure process—rich gas
 Utilities summary .. 28
19 NGL by constant pressure process—lean gas
 Total capital investment ... 33
20 NGL by constant pressure process—rich gas
 Capital investment by section ... 34
21 NGL by constant pressure process—rich gas
 Total capital investment ... 36
22 NGL by constant pressure process—lean gas
 Capital investment by section ... 37
23 Fractionated NGL product 2012 prices ... 42
24 NGL by constant pressure process—rich gas
 Production costs .. 43