Abstract
Process Economics Program Report 264
BIOBUTANOL
(December 2008)

World production of biofuels has experienced phenomenal growth. Various drivers for this phenomenon include high fuel prices, concerns about the environment, energy security and rural development. The majority of the growth in biofuels has been in the production of ethanol. However there are other biofuels, so-called second-generation biofuels that may offer some advantages over ethanol. Second-generation biofuels include cellulosic ethanol, covered in the PEP Report 263 Cellulosic Ethanol and the subject of this report biobutanol.

Biobutanol has a number of advantages over ethanol, has a higher heating value, it is more hydrophobic than ethanol and can be transported via pipeline integrated in the existing petroleum-based fuels infrastructure and it can be added to gasoline at higher levels without engine modification.

Biobutanol has garnered the interest not only in early stage companies such as Tetravitae and Gevo, whose technologies are covered in this report, but also major oil and chemical companies. BP and DuPont have formed a JV to develop biobutanol as a gasoline additive.

This report covers the technological and economic aspects of the production of biobutanol via two processes. The first one is a modification of the established acetone-butanol-ethanol (ABE) fermentation developed by the University of Illinois and a licensed to Tetravitae. It incorporates an improved microorganism (Clostridium beijerincki BA101) and a gas stripping system for in situ product removal (ISPR) originally covered in PEP Review 2007-1. The second process is based on a combination of patents from GEVO and DuPont. It incorporates a novel pathway for the production of isobutanol by a solvent-tolerant microorganism developed by Gevo and a recovery process based on a DuPont patent application. Neither process is commercial but is in the process demonstration phase.

We also include for reference a conventional corn dry mill for the production of ethanol as it is likely that if the biobutanol development program is successful some existing ethanol plants may be converted to biobutanol.
BIOBUTANOL

by GREG BOHLMANN
and
RON BRAY

with contributions by
ALI NAQVI and SYED NAQVI

December 2008

A private report by the
PROCESS ECONOMICS PROGRAM

Menlo Park, California 94025
SRIC agrees to assign professionally qualified personnel to the preparation of the Process Economics Program’s reports and will perform the work in conformance with generally accepted professional standards. No other warranties expressed or implied are made. Because the reports are of an advisory nature, neither SRIC nor its employees will assume any liability for the special or consequential damages arising from the Client’s use of the results contained in the reports. The Client agrees to indemnify, defend, and hold SRIC, its officers, and employees harmless from any liability to any third party resulting directly or indirectly from the Client’s use of the reports or other deliverables produced by SRIC pursuant to this agreement.

For detailed marketing data and information, the reader is referred to one of the SRI Consulting programs specializing in marketing research. THE CHEMICAL ECONOMICS HANDBOOK Program covers most major chemicals and chemical products produced in the United States and the WORLD PETROCHEMICALS PROGRAM covers major hydrocarbons and their derivatives on a worldwide basis. In addition the SRIC DIRECTORY OF CHEMICAL PRODUCERS services provide detailed lists of chemical producers by company, product, and plant for the United States, Western Europe, Canada, and East Asia, South America and Mexico.
CONTENTS

1 INTRODUCTION .. 1-1

2 SUMMARY ... 2-1
 INTRODUCTION .. 2-1
 INDUSTRY STATUS ... 2-1
 TECHNICAL ASPECTS .. 2-2
 n-Butanol Production .. 2-2
 Isobutanol Production ... 2-2
 Ethanol Production ... 2-3
 PROCESS ECONOMICS ... 2-3
 Isobutanol and n-Butanol .. 2-3
 Ethanol and Isobutanol ... 2-6
 SUMMARY ... 2-6

3 INDUSTRY STATUS.. 3-1
 INTRODUCTION .. 3-1
 MARKETS AND PRODUCERS .. 3-3
 CHEMICAL APPLICATIONS .. 3-4
 PRODUCERS FOR CHEMICAL USES .. 3-5
 FUEL USE .. 3-7
 BIObUTANOL PRODUCERS .. 3-8

4 BIOMASS FEEDSTOCKS .. 4-1
 BIOMASS AVAILABILITY ... 4-3
 AGRICULTURAL RESOURCES ... 4-5
 Corn .. 4-11
 Corn Stover ... 4-13
 Stover Collection .. 4-17
CONTENTS (Continued)

Municipal Solid Waste (MSW) ... 4-23
Energy Crops .. 4-25

5 TECHNICAL REVIEW .. 5-1

TEMPERATURE-CONTROLLED ENHANCEMENT METHODS FOR PRODUCTION OF ISOBUTANOL, 1-BUTANOL AND 2-BUTANOL .. 5-2
IMPROVED PRODUCTION OF ISOBUTANOL USING HIGHLY ACTIVE KETOL-ACID REDUCTOISOMERASE ENZYME .. 5-8
FERMENTATION & CATALYTIC HYDROGEN USING MULTIPLE BED BIOREACTORS .. 5-11
USE OF METABOLICALLY ENGINEERED YEAST FERMENTATIVE PATHWAYS TO PRODUCE BUTANOL .. 5-14
BIOFUEL PRODUCTION BY RECOMBINANT MICROORGANISMS 5-17

6 N-BUTANOL ... 6-1

INTRODUCTION ... 6-1
BIOBUTANOL AS FUEL ... 6-2
PROCESS REVIEW ... 6-2
PROCESS DESCRIPTION ... 6-12
Corn Milling .. 6-14
Fermentation .. 6-15
Solvent Recovery .. 6-15
PROCESS DISCUSSION ... 6-23
Design Basis ... 6-23
Feedstock ... 6-24
Solvent Recovery .. 6-25
On-Stream Factor .. 6-25
Waste Treatment .. 6-25
Materials of Construction ... 6-25
CONTENTS (Continued)

CAPITAL AND PRODUCTION COSTS ... 6-25

7 ISOBUTANOL FROM CORN ... 7-1

INTRODUCTION ... 7-1

TECHNOLOGY OVERVIEW ... 7-1

Fermentation ... 7-3

PROCESS DESCRIPTION ... 7-4

Saccharification ... 7-6

Fermentation ... 7-6

Distillation and Dehydration ... 7-6

DDGS Recovery ... 7-7

PROCESS DISCUSSION ... 7-17

Fermentation ... 7-17

Distillation and Dehydration ... 7-17

DDGS Recovery ... 7-18

Waste Treatment .. 7-18

CAPITAL AND PRODUCTION COSTS ... 7-19

DISCUSSION OF PRODUCT VALUE .. 7-19

8 CORN MILLING ... 8-1

WET MILLING PROCESS .. 8-2

Wet Milling Advances ... 8-4

DRY MILLING PROCESS .. 8-7

Dry Milling Advances ... 8-8

PROCESS DESCRIPTION .. 8-13

Saccharification ... 8-16

Anaerobic Fermentation .. 8-16

Distillation and Dehydration ... 8-16
ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Illustration</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Butanol Isomers</td>
<td>3-1</td>
</tr>
<tr>
<td>4.1</td>
<td>Cumulative US Biomass Quantities by Price</td>
<td>4-5</td>
</tr>
<tr>
<td>4.2</td>
<td>Total Arable Land in Crops</td>
<td>4-5</td>
</tr>
<tr>
<td>4.3</td>
<td>World Crop Values 1995</td>
<td>4-6</td>
</tr>
<tr>
<td>4.4</td>
<td>U.S. Corn Prices</td>
<td>4-7</td>
</tr>
<tr>
<td>4.5</td>
<td>Research and Technology Development Pathway Toward Achieving Feedstock Price Target</td>
<td>4-9</td>
</tr>
<tr>
<td>4.6</td>
<td>Ibsal Model</td>
<td>4-10</td>
</tr>
<tr>
<td>4.7</td>
<td>Corn Yield Improvement</td>
<td>4-12</td>
</tr>
<tr>
<td>4.8</td>
<td>Declining Cost of Corn with Time</td>
<td>4-12</td>
</tr>
<tr>
<td>4.9</td>
<td>Midwestern States Examined: Corn Density</td>
<td>4-13</td>
</tr>
<tr>
<td>4.10</td>
<td>The Effect of Plant Size on Collection Distance</td>
<td>4-17</td>
</tr>
<tr>
<td>4.11</td>
<td>Supply Curves for Round and Square Bales of Corn Stover</td>
<td>4-19</td>
</tr>
<tr>
<td>4.12</td>
<td>Shipping Costs per Ton, 35 Miles</td>
<td>4-21</td>
</tr>
<tr>
<td>4.13</td>
<td>Corn Stover Delivery Scenarios</td>
<td>4-22</td>
</tr>
<tr>
<td>4.14</td>
<td>Feedstock from Corn Field to BioRefinery</td>
<td>4-23</td>
</tr>
<tr>
<td>4.15</td>
<td>Municipal Solid Waste Composition</td>
<td>4-25</td>
</tr>
<tr>
<td>4.16</td>
<td>ORNL--BFDP Switchgrass Research Sites</td>
<td>4-27</td>
</tr>
<tr>
<td>4.17</td>
<td>Relationships between Total Cost and Yield</td>
<td>4-29</td>
</tr>
<tr>
<td>4.18</td>
<td>Ethanol Yields from Switchgrass, Corn and Stover</td>
<td>4-30</td>
</tr>
<tr>
<td>5.1</td>
<td>Isobutanol Pathway</td>
<td>5-4</td>
</tr>
<tr>
<td>5.2</td>
<td>1-Butanol Pathway</td>
<td>5-5</td>
</tr>
<tr>
<td>5.3</td>
<td>2-Butanol Pathway</td>
<td>5-6</td>
</tr>
<tr>
<td>5.4A</td>
<td>Isobutanol Pathway</td>
<td>5-9</td>
</tr>
<tr>
<td>5.4B</td>
<td>Isobutanol Pathway</td>
<td>5-10</td>
</tr>
<tr>
<td>5.5</td>
<td>Production and Flow of Butyric Acid and Butanol</td>
<td>5-12</td>
</tr>
<tr>
<td>5.6</td>
<td>Esterification and Hydrogenolysis of Butyric Acid to Butanol</td>
<td>5-13</td>
</tr>
<tr>
<td>5.7</td>
<td>Enzymatic Pathway of Both the PDH Bypass Route and Direct Conversion Route</td>
<td>5-14</td>
</tr>
</tbody>
</table>
ILLUSTRATIONS (Concluded)

<table>
<thead>
<tr>
<th>Illustration</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.8</td>
<td>Metabolic Pathway for the Conversion of a Glucose Molecule to Butanol</td>
<td>5-17</td>
</tr>
<tr>
<td>5.9</td>
<td>Process of Converting Glucose to Pyruvate</td>
<td>5-19</td>
</tr>
<tr>
<td>5.10</td>
<td>Various Pathways Undertaken by Pyruvate After Glycolysis</td>
<td>5-20</td>
</tr>
<tr>
<td>5.11</td>
<td>Enzymatic Pathway for Alcohol Synthesis</td>
<td>5-21</td>
</tr>
<tr>
<td>6.1</td>
<td>ABE Fermentation Pathway of C. Acetobutylicum</td>
<td>6-3</td>
</tr>
<tr>
<td>6.2</td>
<td>Production of Butanol from Corn by Solventogenic Clostidia</td>
<td>6-4</td>
</tr>
<tr>
<td>6.3</td>
<td>Single Battery at the Dokshikino Plant</td>
<td>6-5</td>
</tr>
<tr>
<td>6.4</td>
<td>C. Beijerinckii Strain Comparison</td>
<td>6-6</td>
</tr>
<tr>
<td>6.5</td>
<td>Production of ABE from Starch by Hyperbutanol--Producing C. Beijerinckii BA 101 in a Batch Reactor</td>
<td>6-7</td>
</tr>
<tr>
<td>6.6</td>
<td>Butanol Production by Fermentation of Corn (Corn Starch) and Recovery by Distillation</td>
<td>6-9</td>
</tr>
<tr>
<td>6.7</td>
<td>Environmental Energy Inc. Continuous Two Stage Fermentation</td>
<td>6-11</td>
</tr>
<tr>
<td>6.9</td>
<td>n-Butanol from Corn Process Flow Diagram</td>
<td>E-3</td>
</tr>
<tr>
<td>7.1</td>
<td>Isobutanol from Corn Process Flow Diagram</td>
<td>E-9</td>
</tr>
<tr>
<td>7.2</td>
<td>Glucose to Alcohols Pathways</td>
<td>7-17</td>
</tr>
<tr>
<td>8.1</td>
<td>α-Amylose and Amylopectin</td>
<td>8-1</td>
</tr>
<tr>
<td>8.2</td>
<td>Corn Wet-Milling Process Overview</td>
<td>8-4</td>
</tr>
<tr>
<td>8.3</td>
<td>Comparison of Conventional and Enzymatic Corn Wet Milling</td>
<td>8-5</td>
</tr>
<tr>
<td>8.4</td>
<td>Starch Yield as Function of Enzyme Addition</td>
<td>8-6</td>
</tr>
<tr>
<td>8.5</td>
<td>Corn Dry Milling</td>
<td>8-8</td>
</tr>
<tr>
<td>8.6</td>
<td>Ethanol Production and Residual Starch</td>
<td>8-9</td>
</tr>
<tr>
<td>8.7</td>
<td>Corn Dry Grind Process with Fiber Conversion to Ethanol</td>
<td>8-11</td>
</tr>
<tr>
<td>8.8</td>
<td>Multiple Pressure Distillation + PSA Molecular Sieve Process</td>
<td>8-12</td>
</tr>
<tr>
<td>8.9</td>
<td>Multiple Pressure Distillation + BNRI VP Membrane Process</td>
<td>8-13</td>
</tr>
<tr>
<td>8.10</td>
<td>Corn Dry Mill Process Flow Diagram</td>
<td>E-17</td>
</tr>
</tbody>
</table>
TABLES

2.1 Biobutanol Manufacturing Cost Summary... 2-4
2.2 Biobutanol Manufacturing Cost Summary.. 2-5
2.3 Ethanol & Biobutanol Manufacturing Cost Summary.. 2-7
3.1 Physical Properties... 3-3
3.2 n-Butanol Consumption Pattern ... 3-4
3.3 n-Butanol Historical Consumption.. 3-5
3.4 Isobutanol Consumption Pattern.. 3-5
3.5 Major Producers of n-Butanol and Isobutanol... 3-6
3.6 Isobutyl Alcohol Global Capacity.. 3-7
3.7 Comparative Butanol Fuel Characteristics.. 3-8
3.8 Biobutanol Participants, 2007.. 3-8
4.1 Available Biomass in the United States... 4-4
4.2 Potential Bioethanol Production.. 4-7
4.3 Major Energy Inputs for Selected Crops ... 4-8
4.4 2007/08 Yields for Major U.S. Field Crops.. 4-11
4.5 Corn and Stover Production in 2000 ... 4-14
4.6 Corn and Stover Composition... 4-15
4.7 Corn Stover Composition Range.. 4-15
4.8 Theoretical Ethanol Yield from Corn Stover Fractions.. 4-16
4.9 Estimated Costs for Corn Stover Harvest.. 4-18
4.10 Cost Variation Under Low and High Resource Availability 4-19
4.11 One Pass Harvest and Rail System Economics .. 4-20
4.12 Generation and Recovery of MSW Materials 2006... 4-24
4.13 Lignocellulosic Crops ... 4-26
4.14 Chemical Composition of Switchgrass... 4-28
4.15 Switchgrass Yield Data.. 4-28
4.16 Comparative Traits of Corn and Switchgrass.. 4-29
TABLES (Continued)

5.1 Doubling Time (Minutes) for Various Bacterial Species................................. 5-11
5.2 Enzymes and Genes for Conversion of Glucose to Butanol in Yeast Cells........ 5-16
6.1 Selected Liquid Fuel Characteristics... 6-2
6.2 n-Butanol from Corn Design Bases .. 6-13
6.3 n-Butanol from Corn Stream Flows... 6-16
6.4 n-Butanol from Corn Major Equipment ... 6-19
6.5 n-Butanol from Corn Utilities Summary.. 6-22
6.6 Fermentation Broth Composition .. 6-23
6.7 Unit Operations that can be Applied to Butanol Production 6-24
6.8 n-Butanol from Corn Total Capital Investment .. 6-28
6.9 n-Butanol from Corn Capital Investment by Section 6-29
6.10 n-Butanol from Corn Production Costs ... 6-30
7.1 Fuel Physical Properties .. 7-2
7.2 Physical Properties, Butanol Isomers .. 7-2
7.3 Isobutanol and n-Butanol Properties ... 7-3
7.4 Corn Dry Mill Design Bases .. 7-5
7.5 Isobutanol from Corn Dry Mill Stream Flows .. 7-8
7.6 Isobutanol from Corn Dry Mill Major Equipment .. 7-13
7.7 Isobutanol from Corn Dry Mill Utilities Summary ... 7-16
7.8 DDGS Value Depending on Species ... 7-18
TABLES (Concluded)

7.9 Isobutanol from Corn Dry Mill
 Total Capital Investment... 7-21

7.10 Isobutanol from Corn Dry Mill
 Capital Investment by Section... 7-22

7.11 Isobutanol from Corn Dry Mill
 Production Costs ... 7-24

8.1 Corn Wet Milling CoProducts .. 8-2

8.2 Yield Comparison Between Enzymatic and Conventional Corn Wet Milling 8-6

8.3 Continuous Fermentation Productivities .. 8-10

8.4 Co-Immobilized Enzyme-Microbe Fluidized Bed Yields 8-10

8.5 Corn Dry Mill
 Design Bases .. 8-15

8.6 Corn Dry Mill
 Stream Flows .. 8-18

8.7 Corn Dry Mill
 Major Equipment ... 8-20

8.8 Corn Dry Mill
 Utilities Summary .. 8-22

8.9 DDGS Value Depending on Species.. 8-24

8.10 Corn Dry Mill
 Total Capital Investment... 8-27

8.11 Corn Dry Mill
 Capital Investment by Section... 8-28

8.12 Corn Dry Mill
 Production Costs ... 8-30

8.13 Corn Dry Mill
 Direct Costs by Section .. 8-32